Bayesian Thinking

Learning about exponential parameters, part II

Advertisements

In the previous post, I described using a random walk Metropolis algorithm to sample from the posterior of , where is the location and is the rate parameter for the exponential.   But since the MCMC algorithm is based on steps generated from a multivariate normal distribution, it seems that this algorithm would perform better if the parameters are real-valued.

So it makes sense to transform each parameter into ones that are real-valued.  We let

.

When we transform to , we need to include a Jacobian to write down the posterior for .  It can be shown that the Jacobian is equal to and the new posterior is

Here is the function for computing the log posterior of and a contour plot of the new parameters.  Note that the shape of the posterior is close to normal, suggesting that one can use the random walk Metropolis algorithm effectively with the new posterior.

logpost2=function(theta,y)
{
mu=min(y)-exp(theta[1])
beta=exp(theta[2])
sum(dexp(y-mu,beta,log=TRUE))+sum(theta)
}
fit=laplace(logpost2,c(0,0),y)
mycontour(logpost2,c(-10,1,-2.2,0),y,
xlab=”LOG(MIN Y – MU)”,ylab=”LOG BETA”)

logpost2=function(theta,y)
{
mu=min(y)-exp(theta[1])
beta=exp(theta[2])
sum(dexp(y-mu,beta,log=TRUE))+sum(theta)
}
mycontour(logpost2,c(-10,1,-2.2,0),y,
xlab=”LOG(MIN Y – MU)”,ylab=”LOG BETA”)

Advertisements

Advertisements